ENERGIA CINETICA
En un sistema fìsico, la energía cinética de un cuerpo es energía que surge en el fenómeno del movimiento. Está definida como el trabajo necesario para acelerar un cuerpo de una masa dada desde el reposo hasta la velocidad que posee. Una vez conseguida esta energía durante la aceleración, el cuerpo mantiene su energía cinética salvo que cambie su rapidez o su masa. Para que el cuerpo regrese a su estado de reposo se requiere un trabajo negativo de la misma magnitud que su energía cinética. Suele abreviarse con letra Ec.
Existen varias formas de energía como la energía química, el calor, la radiación electromagnética, la energía nuclear, las energías gravitacional, eléctrica, elástica, etc, todas ellas pueden ser agrupadas en dos tipos: la energía potencial y la energía cinética.
La energía cinética puede ser entendida mejor con ejemplos que demuestren cómo ésta se transforma de otros tipos de energía y a otros tipos de energía. Por ejemplo un ciclista quiere usar la energía química que le proporcionó su comida para acelerar su bicicleta a una velocidad elegida. Su rapidez puede mantenerse sin mucho trabajo, excepto por la resistencia del aire y la fricción. La energía convertida en una energía de movimiento, conocida como energía cinética pero el proceso no es completamente eficiente y el ciclista también produce calor.
La energía cinética en movimiento de la bicicleta y el ciclista pueden convertirse en otras formas. Por ejemplo, el ciclista puede encontrar una cuesta lo suficientemente alta para subir, así que debe cargar la bicicleta hasta la cima. La energía cinética hasta ahora usada se habrá convertido en energía potencial gravitatoria que puede liberarse lanzándose cuesta abajo por el otro lado de la colina. Alternativamente el ciclista puede conectar una dínamo a una de sus ruedas y así generar energía eléctrica en el descenso. La bicicleta podría estar viajando mas despacio en el final de la colina porque mucha de esa energía ha sido desviada en hacer energía eléctrica. Otra posibilidad podría ser que el ciclista aplique sus frenos y en ese caso la energía cinética se estaría disipando a través de la fricción en energía calórica.



Energía potencial

En un sistema físico, la energía potencial es energía que mide la capacidad que tiene dicho sistema para realizar un trabajo en función exclusivamente de su posición o configuración. Puede pensarse como la energía almacenada en el sistema, o como una medida del trabajo que un sistema puede entregar. Suele abreviarse con la letra
scriptstyle U
scriptstyle U
o
scriptstyle E_p
scriptstyle E_p
.

La energía potencial puede presentarse como energía potencial gravitatoria, energía potencial electrostática, y energía potencial elástica.
Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.


Energía potencial asociada a campos de fuerzas
La energía potencial puede definirse solamente cuando la fuerza es conservativa. Si las fuerzas que actúan sobre un cuerpo son no conservativas, entonces no se puede definir la energía potencial, como se verá a continuación. Una fuerza es conservativa cuando se cumple alguna de las siguientes propiedades:
El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido.

El trabajo realizado por la fuerza para cualquier camino cerrado es nulo.

Cuando el rotacional de la fuerza es cero.

Se puede demostrar que todas las propiedades son equivalentes (es decir, que cualquiera de ellas implica la otra). En estas condiciones, la energía potencial se define como:
U_B - U_A = -int_A^B mathbf{F} cdot dmathbf{r} .
U_B - U_A = -int_A^B mathbf{F} cdot dmathbf{r} .


Energía mecánica

La energía mecánica es la energía que se debe a la posición y al movimiento de un cuerpo, por lo tanto, es la suma de las energías potencial, cinética y la elástica de un cuerpo en movimiento. Expresa la capacidad que poseen los cuerpos con masa de efectuar un trabajo.
En la energía potencial puede considerarse también la energía potencial elástica, aunque esto suele aplicarse en el estudio de problemas de ingeniería y no de física.




Conservación de la energía mecánica
La energía se conserva, es decir, ni se crea ni se destruye. Para sistemas abiertos formados por partículas que interactúan mediante fuerzas puramente mecánicas o campos conservativos la energía se mantiene constante con el tiempo:
    • E_{mec} = E_c + E_p = mbox{cte.},
      E_{mec} = E_c + E_p = mbox{cte.},
      .
Donde:
E_c,
E_c,
, es la energía cinética del sistema.
E_p,
E_p,
, es la energía potencial del sistema.

Es importante notar que la energía mecánica así definida permanece constante si únicamente actúan fuerzas conservativas sobre las partículas. Sin embargo existen ejemplos de sistemas de partículas donde la energía mecánica no se conserva:
    • Sistemas de partículas cargadas en movimiento. En ese caso los campos magnéticos no derivan de un potencial y la energía mecánica no se conserva, ya que parte de la energía mecánica "se convierte" en energía del campo electromagnético y viceversa.
quedar como energía interna o energía térmica de agitación de las moléculas o partes microscópicas del sistema.

PISTONES
    • Se denomina pistón a uno de los elementos básicos del motor de combustión interna.
      Se trata de un émbolo que se ajusta al interior de las paredes del cilindro mediante aros flexibles llamados segmentos o anillos. Efectúa un movimiento alternativo, obligando al fluido que ocupa el cilindro a modificar su presión y volumen o transformando en movimiento el cambio de presión y volumen del fluido.
      A través de la articulación de biela y cigüeñal, su movimiento alternativo se transforma en rotativo en este último.
      external image 220px-Piston.gifexternal image magnify-clip.png
      Esquema simplificado del movimiento pistón/bielaPuede formar parte de bombas, compresores y motores. Se construye normalmente en aleación de aluminio.
      Los pistones de motores de combustión interna tienen que soportar grandes temperaturas y presiones, además de velocidades y aceleraciones muy altas. Debido a estos se escogen aleaciones que tengan un peso específico bajo para disminuir la energía cinética que se genera en los desplazamientos. También tienen que soportar los esfuerzos producidos por las velocidades y dilataciones. El material más elegido para la fabricación de pistones es el aluminio y suelen utilizarse aleantes como: cobre, silicio, magnesio y manganeso entre otros.

  • Fabricación
  • external image 175px-Piston_motion_graphs.pngexternal image magnify-clip.png
  • Gráficas de posición, velocidad y aceleración de un pistón; en función de distintas relaciones de R (brazo de cigüeñal) y L (longitud de biela).Básicamente existen dos procesos para la fabricación de los pistones: Estos pueden ser:
    • Fundidos
    • Forjados
    • Hipereutecticos
    • con capa de recubrimiento
  • Dependiendo de la cantidad necesaria a producir y especialmente de los esfuerzos, temperaturas, presiones, etc. a los que estarán sometidos (sea un motor diésel, naftero, de gasolina , de competición, etc.) se elige uno u otro método. Los pistones forjados tienen mayor resistencia mecánica. Luego llevan mecanizados varios que son los que determinan la forma final del pistón. Estos mecanizados son hechos con un CNC.
    • Mecanizado del alojamiento del perno o bulón de pistón: se mecaniza el alojamiento del perno, como este perno estará girando cuando el motor esté en funcionamiento por lo que debe quedar una superficie de buena calidad y rugosidad sin rayaduras. Estos son dos orificios ubicados en paredes opuestas del pistón. Estos agujeros deben ser concéntricos (tener la misma línea de eje) y esta línea debe ser paralela a la línea de eje del muñón del cigüeñal ya que si así no fuese al funcionar el motor la biela se “agarra” con el perno. Para que este perno no se salga y raye el cilindro se colocan seguros seger al final de los alojamientos realizados, entonces se debe realizar las cavidades para poner los seguros.
    • Mecanizado del alojamiento de los aros: Se debe realizar la cavidad para poder poner los aros. Para montar el conjunto pistón – aros dentro del cilindro los aros se comprimen, por lo tanto la profundidad del alojamiento de los aros debe ser tal que todo el aro quede oculto en el pistón. En el alojamiento del aro “rasca aceite” se realiza un orificio pasante para que el aceite que se saca del cilindro vaya hacia adentro del pistón y luego se lo direcciona hacia el perno, para poder mantenerlo lubricado.
    • Mecanizado de la cabeza del pistón: de acuerdo al diseño del motor la cabeza puede no ser plana. Puede tener vaciados para mejorar la homogeneidad de la mezcla en la admisión, vaciados para mejorar la combustión y en los motores donde la compresión es alta se realizan vaciados para que al abrir las válvulas no golpeen al pistón. Se debe eliminar cualquier canto vivo.
    • Mecanizado exterior: Al hacer un corte al pistón que pase por la línea de eje del perno y al hacer otro corte que sea perpendicular a la línea del perno puede verse que el pistón no tiene la misma cantidad de material en todas sus paredes, es decir, que por donde pasa el eje la pared del pistón tiene más cantidad de material. Por lo tanto al aumentar la temperatura el pistón dilata de forma desigual quedando con una forma ovalada lo cual puede causar fugas o hacer que el pistón “se agarre” en el cilindro. Para que no pase esto se realiza un mecanizado exterior el cual le da una forma ovalada para que cuando dilate quede de forma cilíndrica. Este mecanizado es de solo algunas milésimas en las paredes por donde no pasa el perno y por lo tanto es imperceptible a simple vista.




CONCLUSION: la energia esta alrededor nuestro,en todas partes. hay energia en el viento cuando sopla y en el agua cuando corre. hay energia almacenada en combustibles tales como el carbono y el gas. la energia se libera cuando lo quemamos.

donde hay movimiento hay consumo de energia, ya sea quimica,calorica o potencial,cinetica,mecanica.

las maquinas trabajan con ayuda de pistones que transforman un movimiento vertical a un movimiento circular.